Jacobian Of A Curve
   HOME

TheInfoList



OR:

In mathematics, the Jacobian variety ''J''(''C'') of a non-singular
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane ...
''C'' of
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of living and fossil organisms as well as viruses. In the hierarchy of biological classification, genus comes above species and below family. In binomial nom ...
''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the
Picard group In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global ve ...
of ''C'', hence an abelian variety.


Introduction

The Jacobian variety is named after
Carl Gustav Jacobi Carl Gustav Jacob Jacobi (; ; 10 December 1804 – 18 February 1851) was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants, and number theory. His name is occas ...
, who proved the complete version of the Abel–Jacobi theorem, making the injectivity statement of Niels Abel into an isomorphism. It is a principally polarized abelian variety, of
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
''g'', and hence, over the complex numbers, it is a
complex torus In mathematics, a complex torus is a particular kind of complex manifold ''M'' whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number ''N'' circles). Here ''N'' must be the even number 2''n'', whe ...
. If ''p'' is a point of ''C'', then the curve ''C'' can be mapped to a subvariety of ''J'' with the given point ''p'' mapping to the identity of ''J'', and ''C'' generates ''J'' as a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
.


Construction for complex curves

Over the complex numbers, the Jacobian variety can be realized as the quotient space ''V''/''L'', where ''V'' is the dual of the
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
of all global holomorphic differentials on ''C'' and ''L'' is the
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
of all elements of ''V'' of the form : gamma\ \omega \mapsto \int_\gamma \omega where ''γ'' is a closed
path A path is a route for physical travel – see Trail. Path or PATH may also refer to: Physical paths of different types * Bicycle path * Bridle path, used by people on horseback * Course (navigation), the intended path of a vehicle * Desire p ...
in ''C''. In other words, : J(C) = H^0(\Omega_C^1)^* / H_1(C), with H_1(C) embedded in H^0(\Omega_C^1)^* via the above map. This can be done explicitly with the use of
theta function In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field ...
s. The Jacobian of a curve over an arbitrary field was constructed by as part of his proof of the Riemann hypothesis for curves over a finite field. The Abel–Jacobi theorem states that the torus thus built is a variety, the classical Jacobian of a curve, that indeed parametrizes the degree 0 line bundles, that is, it can be identified with its
Picard variety In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global v ...
of degree 0 divisors modulo linear equivalence.


Algebraic structure

As a group, the Jacobian variety of a curve is isomorphic to the quotient of the group of divisors of degree zero by the subgroup of principal divisors, i.e., divisors of rational functions. This holds for fields that are not algebraically closed, provided one considers divisors and functions defined over that field.


Further notions

Torelli's theorem states that a complex curve is determined by its Jacobian (with its polarization). The
Schottky problem In mathematics, the Schottky problem, named after Friedrich Schottky, is a classical question of algebraic geometry, asking for a characterisation of Jacobian varieties amongst abelian varieties. Geometric formulation More precisely, one should co ...
asks which principally polarized abelian varieties are the Jacobians of curves. The
Picard variety In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global v ...
, the
Albanese variety In mathematics, the Albanese variety A(V), named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. Precise statement The Albanese variety is the abelian variety A generated by a variety V taking a given point of V to ...
,
generalized Jacobian In algebraic geometry a generalized Jacobian is a commutative algebraic group associated to a curve with a divisor, generalizing the Jacobian variety of a complete curve. They were introduced by Maxwell Rosenlicht in 1954, and can be used to stu ...
, and
intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by ...
s are generalizations of the Jacobian for higher-dimensional varieties. For varieties of higher dimension the construction of the Jacobian variety as a quotient of the space of holomorphic 1-forms generalizes to give the
Albanese variety In mathematics, the Albanese variety A(V), named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. Precise statement The Albanese variety is the abelian variety A generated by a variety V taking a given point of V to ...
, but in general this need not be isomorphic to the Picard variety.


See also

*
Period matrix In mathematics, in the field of algebraic geometry, the period mapping relates families of Kähler manifolds to families of Hodge structures. Ehresmann's theorem Let be a holomorphic submersive morphism. For a point ''b'' of ''B'', we deno ...
– period matrices are a useful technique for computing the Jacobian of a curve *
Hodge structure In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structur ...
– these are generalizations of Jacobians *
Honda–Tate theorem In mathematics, the Honda–Tate theorem classifies abelian varieties over finite fields up to isogeny. It states that the isogeny classes of simple abelian varieties over a finite field of order ''q'' correspond to algebraic integers all of whose ...
– classifies abelian varieties over finite fields up to isogeny *
Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by ...


References


Computation techniques


Period Matrices of Hyperelliptic Curves

Abeliants and their application to an elementary construction of Jacobians
– techniques for constructing Jacobians


Isogeny classes

* Infinite families of pairs of curves over Q with isomorphic Jacobians
Abelian varieties isogenous to a Jacobian

Abelian varieties isogenous to no Jacobian


Cryptography

* Curves, Jacobians, and Cryptography


General

* * * * * * * * {{Algebraic curves navbox Abelian varieties Algebraic curves Geometry of divisors Moduli theory